Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Plant ; 172(3): 1506-1517, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33483975

RESUMO

Snowmelt in alpine ecosystems brings ample water, and together with above-freezing temperatures, initiates plant growth. In this scenario, rapid activation of photosynthesis is essential for a successful life-history strategy. But, strong solar radiation in late spring enhances the risk of photodamage, particularly before photosynthesis is fully functional. We compared the photoprotective strategy of five alpine forbs: one geophyte not particularly specialised in subnival life (Crocus albiflorus) and four wintergreens differing in their degree of adaptation to subnival life, from least to most specialised: Gentiana acaulis, Geum montanum, Homogyne alpina and Soldanella alpina. We used distance to the edge of snow patches as a proxy to study time-dependent changes after melting. We postulated that the photoprotective response of snowbed specialists would be stronger than of more-generalist alpine meadow species. Fv /Fm was relatively low across wintergreens and even lower in the geophyte C. albiflorus. This species also had the largest xanthophyll-cycle pool and lowest tocopherol and flavonoid glycoside contents. After snow melting, all the species progressively activated ETR, but particularly the intermediate snowbed species G. acaulis and G. montanum. The photoprotective responses after snowmelt were idiosyncratic: G. montanum rapidly accumulated xanthophyll-cycle pigments, tocopherol and flavonoid glycosides; while S. alpina showed the largest increase in plastochromanol-8 and chlorophyll contents and the greatest changes in optical properties. Climate warming scenarios might shift the snowmelt date and consequently alter the effectiveness of photoprotection mechanisms, potentially changing the fitness outcome of the different strategies adopted by alpine forbs.


Assuntos
Ecossistema , Neve , Clima , Desenvolvimento Vegetal , Estações do Ano
2.
Ann Bot ; 124(7): 1211-1226, 2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31549137

RESUMO

BACKGROUND AND AIMS: Lichens represent a symbiotic relationship between at least one fungal and one photosynthetic partner. The association between the lichen-forming fungus Mastodia tessellata (Verrucariaceae) and different species of Prasiola (Trebouxiophyceae) has an amphipolar distribution and represents a unique case study for the understanding of lichen symbiosis because of the macroalgal nature of the photobiont, the flexibility of the symbiotic interaction and the co-existence of free-living and lichenized forms in the same microenvironment. In this context, we aimed to (1) characterize the photosynthetic performance of co-occurring populations of free-living and lichenized Prasiola and (2) assess the effect of the symbiosis on water relations in Prasiola, including its tolerance of desiccation and its survival and performance under sub-zero temperatures. METHODS: Photochemical responses to irradiance, desiccation and freezing temperature and pressure-volume curves of co-existing free-living and lichenized Prasiola thalli were measured in situ in Livingston Island (Maritime Antarctica). Analyses of photosynthetic pigment, glass transition and ice nucleation temperatures, surface hydrophobicity extent and molecular analyses were conducted in the laboratory. KEY RESULTS: Free-living and lichenized forms of Prasiola were identified as two different species: P. crispa and Prasiola sp., respectively. While lichenization appears to have no effect on the photochemical performance of the alga or its tolerance of desiccation (in the short term), the symbiotic lifestyle involves (1) changes in water relations, (2) a considerable decrease in the net carbon balance and (3) enhanced freezing tolerance. CONCLUSIONS: Our results support improved tolerance of sub-zero temperature as the main benefit of lichenization for the photobiont, but highlight that lichenization represents a delicate equilibrium between a mutualistic and a less reciprocal relationship. In a warmer climate scenario, the spread of the free-living Prasiola to the detriment of the lichen form would be likely, with unknown consequences for Maritime Antarctic ecosystems.


Assuntos
Clorófitas , Líquens , Regiões Antárticas , Ecossistema , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...